6 research outputs found

    Thickness and Thermal Conductivities of the Walls and Fluid Layer Effects on the Onset of Thermal Convection in a Horizontal Fluid Layer Heated from Below

    Get PDF
    The thermal boundary conditions have important effects on the hydrodynamics of a thermo‐convective fluid layer. These effects are introduced through the Biot number under the Robin type boundary conditions. The thermal conductivity and thicknesses of the walls are key properties to bridge two known ideal situations widely studied: the fluid layer bounded by two insulating walls and the fluid layer bounded by two perfect thermal conducting walls. This chapter is devoted to the physical mechanisms involved in the thermal boundary conditions, its influence on the linear stability of the fluid layer and its implications with the pattern formation. A review of very important investigations on the subject is also given. The role of the thermal conductivities and thicknesses of the walls is explained with help of curves of criticality for the thermoconvection in a horizontal Newtonian fluid layer

    Applications of Viscoelastic Fluids Involving Hydrodynamic Stability and Heat Transfer

    Get PDF
    Rayleigh and Marangoni convection and rheology are linked in the thermal convection of viscoelastic fluids to some recent technological applications. Such technology developments as the ones presented here undoubtedly shall be based on interdisciplinary projects involving not only rheology or fluid mechanics but several other disciplines. Three practical applications which use Rayleigh or Marangoni convection in their working principle are presented along with some technical details. This contribution focus mainly on the physical mechanism and the involved hydrodynamics of some lab and industrial applications. Finally, a short discussion on the role play by the convective mechanisms is given in order to provide integration of the exposed ideas

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    No full text
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions
    corecore